Electron Particle Transport Using Modulated Gas Puff

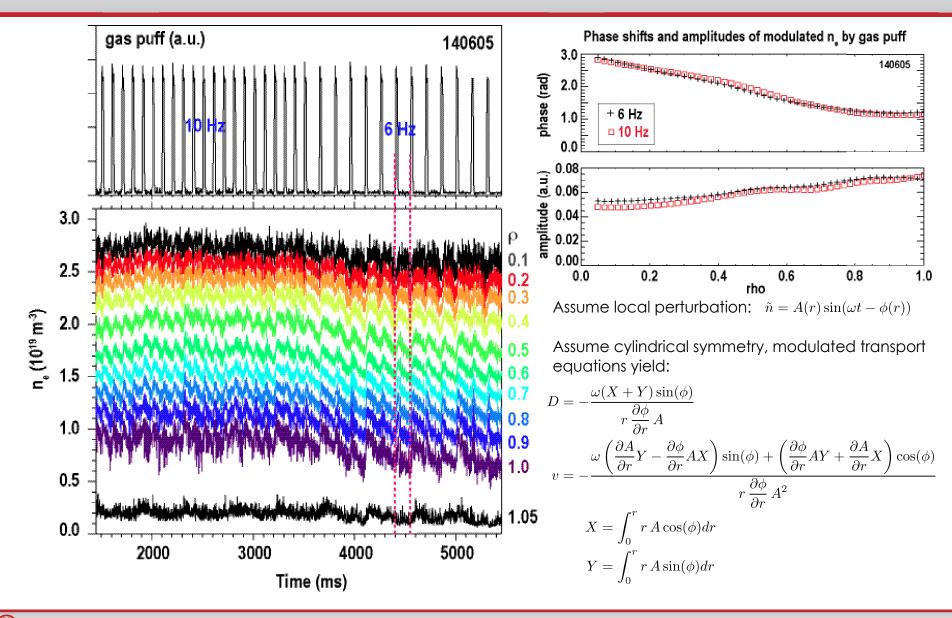
S. Kubota, UCLA PDG, NSTX Team

In support of FY2012 JRT Milestone

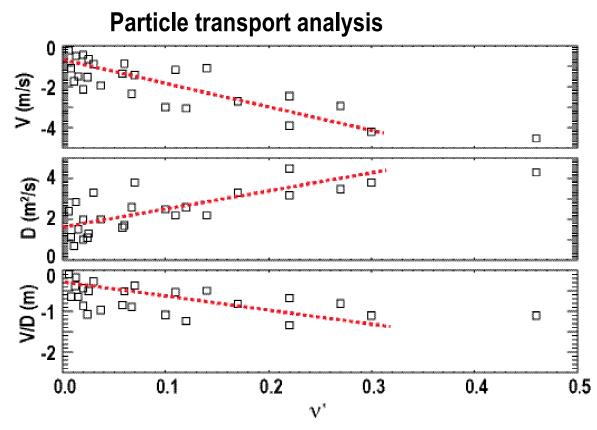
- Measure core electron particle transport
 - > L-mode (Ohmic and NB-heated)
 - > H-mode possibly after October 2011 (requires DIII-D V-band system)
- Simultaneous measurement of core turbulence
- Connection to theory
- Comparison with DIII-D results

• Measure particle diffusion coefficient (D) and pinch velocity (v)

- Modulate edge particle source with gas puff using SGI
 - > Identical to method used on DIII-D in 2010
 - > Analysis by Takenaga (JT-60U) assumes cylindrical symmetry
- Use ultrafast-swept frequency reflectometers for density profile response
 - > $n_e = 0.2 3.5 \times 10^{13} \text{ cm}^{-3}$, $\Delta t > 4 \, \mu s$ resolution


Turbulence measurements

- Ultrafast-swept frequency reflectometers
 - > $\delta n/n$, k_r spectrum (0-20 cm⁻¹), radial correlations
- BES, high-k, FIReTIP, correlation & fixed-frequency reflectometers
 - > $\delta n/n$, k_r & k_{θ} spectra, radial & poloidal correlations


Theory prediction will use nonlinear GYRO

- Low order comparisons: D and v
- High order comparisons: $\delta n/n$, spectral shape, correlations
- ν*, I_p, B_T scans

Example of Technique and Analysis

Investigate v* Dependence

- Dependence on collisionality
 - Diffusion coefficient, inward pinch velocity increase with v^*
 - Same observation seen on many machines
 - Turbulence driven
 - > On NSTX compare with turbulence measurements ($\delta n/n$, k spectra, correlations)

Experimental Plan

•	Requested run time: 2 days	
•	Day 1: Develop 2 standard target discharges	
	- Necessary conditions	
	> MHD-free during time of interest	
	> L-mode with density below 3.5x10 ¹³ cm ⁻³	
	- Develop Ohmic target, adjust SGI parameters	9 shots
	- Document Ohmic target	6 shots
	- Develop NB-heated target, adjust SGI parameters	9 shots
	- Document NB-heated target	6 shots
•	Day 2: v*, I _p , B _T , scans	
	- 3 point scans in NB-heated targets, combined with Day 1 shots	30 shots
•	Requirements	
	- Diagnostics:	
	> Reflectometers, BES, high-k, FIReTIP, etc.	
	> MPTS, CHERS, MSE, USXR, etc.	
	- Would benefit from some experience with SGI operation in L-mode prior to Day	
•	Analysis	

- LRDFIT, TRANSP, GYRO, etc.

Some Thoughts About H-Mode

• Requires DIII-D V-band system

- Delivery after end of DIII-D run (October 2011?)
- Extends frequency range to 72 GHz
 - > $n_{e}=0.2-6.4\times10^{13}$ cm⁻³
- Turbulence measurements will require modifications
 - > Increase HTO tuning voltage circuit to 10 MHz
 - > RF shielding
 - > Repackaging for equipment rack
 - > Waveguide fabrication
 - > Antenna mock-up fabrication
 - > Frequency and distance calibration (in NTC during maintenance weeks)
- Equipment will be activated
 - > Will need to arrange for access outside NTC
- Could be available January 2012
- Gas puff modulation into H-mode
 - Penetration of perturbation to core more difficult
 - > Will require more time to optimize SGI puff
- Requires considerable effort and planning.
- Need to know soon whether this will be worth the effort.